# The HILT CRC is a 10-year program established in 2021 with industry, research organisation and government funding of \$200M cash + in-kind. ANU is a core partner.



## ANU participates in 19 out of 40 projects in the HILT CRC (and leads 11 projects)

#### P1: Process technologies program

| <b>RP1.004</b><br>Impact of<br>Hydrogen DRI on<br>Melting in an<br>Electric Furnace | <b>RP1.005</b><br>Hydrogen<br>Ironmaking:<br>Fluidised Bed<br>H <sub>2</sub> DRI with<br>Australian Focus<br><b>John Pye</b> | <b>RP1.008</b><br>Green Pyromet<br>/Hydromet<br>Beneficiation<br>Pathways | RP1.010<br>Hybrid Hydrogen<br>Direct and<br>Plasma<br>Reduction of<br>Iron Ore<br>Alireza Rahbari | <b>RP1.012</b><br>Prevention of<br>Sticking in H <sub>2</sub><br>Fluidised DRI<br>Production              | <b>RP1.013</b><br>Alumina<br>Refineries' Next<br>Generation<br>Transition<br>(ALUMINEXT)         | Names of ANU project<br>leaders indicated<br>(where applicable)                |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| P2: Cross c                                                                         | utting technol                                                                                                               | ogies program                                                             | 1                                                                                                 |                                                                                                           |                                                                                                  |                                                                                |
| <b>RP2.001</b><br>Green Hydrogen<br>Supply<br>Modelling                             | RP2.003<br>Green Heat for<br>Industry                                                                                        | RP2.006<br>Hydrogen Supply<br>within HILT<br>Regional Hubs                | RP2.008<br>Lost Production<br>and Variability                                                     | <b>RP2.009 / 2.017</b><br>High Temperature<br>Thermal Energy<br>Storage for<br>Industrial<br>Applications | RP2.014<br>Low-Cost Reliable<br>Green Electricity<br>Supply for Low-<br>Carbon Heavy<br>Industry | <b>RP2.016</b><br>Physical and<br>chemical<br>properties of<br>Australian ores |
| Joe Coventry                                                                        | John Pye                                                                                                                     |                                                                           | John Pye                                                                                          | Joe Coventry                                                                                              | Bin Lu                                                                                           |                                                                                |

#### P3: Facilitating transformation program (Fiona Beck)

| RP3.004             | RP3.005            | RP3.006            | RP3.007             | RP3.008         |
|---------------------|--------------------|--------------------|---------------------|-----------------|
| Intermediate        | Analysis of        | Certification and  | Unlocking           | Policy Roadmap  |
| Product Exports     | Market, Cost and   | Verification to    | Investment in       | for Australia's |
| for Australia-China | Locational Factors | Enable a           | Energy              | Heavy Industry  |
| Green Steel         | for Green Iron and | Successful LCT for | Infrastructure for  | Low-Carbon      |
|                     | Steel in Australia | Heavy Industry     | Net Zero Industrial | Transition      |
| Jorrit Gosens       | Frank Jotzo        | Emma Aisbett       | Hubs                |                 |

## Hydrogen ironmaking

- Competitive green steel production is feasible without high-٠ grade ores
- Fluidised bed iron making is appealing compared to a shaft • furnace process because of saved pelletisation costs
- At a H<sub>2</sub> cost of 3.5 USD/kg, green steel is estimated to cost ٠ ~45-60% more than conventional steel



Renewable energy supply

800

700

600

500

400

300

200

100

0

Levelised cost of liquid steel (AUD/tLS)

## Green hydrogen supply

- Continuous hydrogen supply is possible without significant cost penalty
- Optimal PV/wind infrastructure mix varies greatly by region
- Locational factors significantly influence the cost of hydrogen
- Hydrogen cost is projected to reduce significantly in future





Port Hedlar



LCOH results for 100% supply capacity factor (underground H<sub>2</sub> storage)

Integrated GIS and techno-economic assessment optimises infrastructure locations at each regional hub

## Green heat supply and thermal storage

• Thermal energy storage is the most attractive storage option for heat supply in all locations



