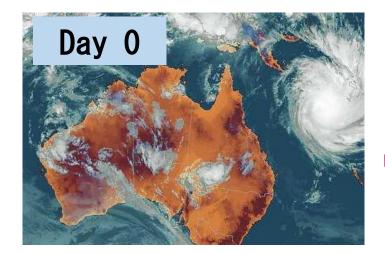
evolution using deep learning: application to synthetic cyclone track generation

Navid Constantinou (RSES)

Omri Anzecot (Ben-Gurion Uni)

Zhisong Qu (MSI)

Matthew Hole (MSI)


Artificial Intelligence (NCI)

(Photo courtesy of JCU)

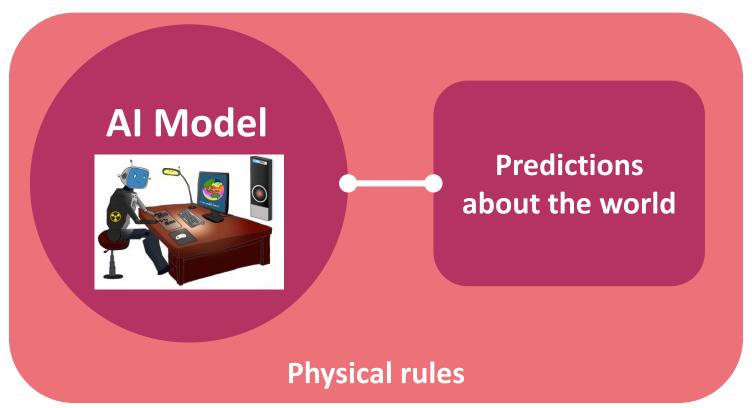
Jack Miller PhB Charles O'Neil PhB

Predicting cyclone's trajectory

Numerical Weather Prediction (Physics) Model

- Accurate 🌐
- Expensive Slow (ヱ)□
- Day 3

Statistical Deep Learning Al Model


- Cheap 💮
- Unphysical (often)
- Hard to train (1) (not much data available)

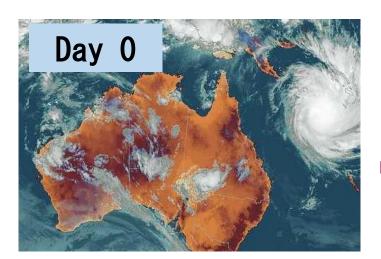
How do we build an AI model?

AI models learn about the world via data.

Unfortunately, we have very little data.

(The largest cyclone database only contains 4000 examples [IBTrACS and ERA5, 1970-2021].)

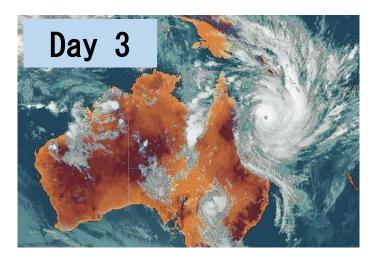
We used a novel deep learning model (Koopman Autoencoders) that combines physics + AI methods


Results

We found teaching the AI model about the physics improved accuracy for cyclone predictions (and also other scenarios!).

Physics-informed AI model improved cyclone windspeed prediction by **40%** after 24 hours and sea surface temperature prediction by up to **200%**

Predicting cyclone's trajectory


We can more accurately predict the movement of cyclones in new regimes. How will a category 3 storm evolve south of Cairns?

Statistical Physics-informed Deep Learning Al Model

Accurate

Cheap 😁

Using physical constraints + AI models

 Generate cheaply synthetic but realistic new cyclone trajectories
Create large cyclone datasets that can be used to train novel/better models
Leading to better preparation for future events